Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Int Immunopharmacol ; 100: 108125, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1401542

ABSTRACT

Mucosal barrier alterations may play a role in the pathogenesis of several diseases, including COVID-19. In this study we evaluate the association between bacterial translocation markers and systemic inflammation at the earliest time-point after hospitalization and at the last 72 h of hospitalization in survivors and non-survivors COVID-19 patients. Sixty-six SARS-CoV-2 RT-PCR positive patients and nine non-COVID-19 pneumonia controls were admitted in this study. Blood samples were collected at hospital admission (T1) (Controls and COVID-19 patients) and 0-72 h before hospital discharge (T2, alive or dead) to analyze systemic cytokines and chemokines, lipopolysaccharide (LPS) concentrations and soluble CD14 (sCD14) levels. THP-1 human monocytic cell line was incubated with plasma from survivors and non-survivors COVID-19 patients and their phenotype, activation status, TLR4, and chemokine receptors were analyzed by flow cytometry. COVID-19 patients presented higher IL-6, IFN-γ, TNF-α, TGF-ß1, CCL2/MCP-1, CCL4/MIP-1ß, and CCL5/RANTES levels than controls. Moreover, LPS and sCD14 were higher at hospital admission in SARS-CoV-2-infected patients. Non-survivors COVID-19 patients had increased LPS levels concomitant with higher IL-6, TNF-α, CCL2/MCP-1, and CCL5/RANTES levels at T2. Increased expression of CD16 and CCR5 were identified in THP-1 cells incubated with the plasma of survivor patients obtained at T2. The incubation of THP-1 with T2 plasma of non-survivors COVID-19 leads to higher TLR4, CCR2, CCR5, CCR7, and CD69 expression. In conclusion, the coexistence of increased microbial translocation and hyperinflammation in patients with severe COVID-19 may lead to higher monocyte activation, which may be associated with worsening outcomes, such as death.


Subject(s)
COVID-19/immunology , Inflammation/etiology , Lipopolysaccharides/blood , Monocytes/physiology , SARS-CoV-2 , Aged , Aged, 80 and over , Bacterial Translocation , COVID-19/mortality , Female , Hospitalization , Humans , Inflammation Mediators/blood , Male , Middle Aged , Severity of Illness Index , THP-1 Cells
2.
Cardiovasc Res ; 117(1): 224-239, 2021 01 01.
Article in English | MEDLINE | ID: covidwho-1387842

ABSTRACT

AIMS: To elucidate the prognostic role of monocytes in the immune response of patients with coronary artery disease (CAD) at risk for life-threatening heart and lung injury as major complications of SARS-CoV-2 infection. METHODS AND RESULTS: From February to April 2020, we prospectively studied a cohort of 96 participants comprising 47 consecutive patients with CAD and acute SARS-CoV-2 infection (CAD + SARS-CoV-2), 19 CAD patients without infections, and 30 healthy controls. Clinical assessment included blood sampling, echocardiography, and electrocardiography within 12 h of admission. Respiratory failure was stratified by the Horovitz Index (HI) as moderately/severely impaired when HI ≤200 mmHg. The clinical endpoint (EP) was defined as HI ≤200 mmHg with subsequent mechanical ventilation within a follow-up of 30 days. The numbers of CD14dimCD16+ non-classical monocytes in peripheral blood were remarkably low in CAD + SARS-CoV-2 compared with CAD patients without infection and healthy controls (P < 0.0001). Moreover, these CD14dimCD16 monocytes showed decreased expression of established markers of adhesion, migration, and T-cell activation (CD54, CD62L, CX3CR1, CD80, and HLA-DR). Decreased numbers of CD14dimCD16+ monocytes were associated with the occurrence of EP. Kaplan-Meier curves illustrate that CAD + SARS-CoV-2 patients with numbers below the median of CD14dimCD16+ monocytes (median 1443 cells/mL) reached EP significantly more often compared to patients with numbers above the median (log-rank 5.03, P = 0.025). CONCLUSION: Decreased numbers of CD14dimCD16+ monocytes are associated with rapidly progressive respiratory failure in CAD + SARS-CoV-2 patients. Intensified risk assessments comprising monocyte sub- and phenotypes may help to identify patients at risk for respiratory failure.


Subject(s)
COVID-19/complications , Coronary Artery Disease/complications , Lipopolysaccharide Receptors/analysis , Monocytes/physiology , Receptors, IgG/analysis , SARS-CoV-2 , Aged , Aged, 80 and over , COVID-19/immunology , Coronary Artery Disease/immunology , Female , GPI-Linked Proteins/analysis , Humans , Immunohistochemistry , Male , Middle Aged , Monocytes/immunology , Phenotype , Retrospective Studies
3.
Int Immunopharmacol ; 101(Pt B): 107598, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1240398

ABSTRACT

MCP-1 (Monocyte chemoattractant protein-1), also known as Chemokine (CC-motif) ligand 2 (CCL2), is from family of CC chemokines. It has a vital role in the process of inflammation, where it attracts or enhances the expression of other inflammatory factors/cells. It leads to the advancement of many disorders by this main mechanism of migration and infiltration of inflammatory cells like monocytes/macrophages and other cytokines at the site of inflammation. MCP-1 has been inculpated in the pathogenesis of numerous disease conditions either directly or indirectly like novel corona virus, cancers, neuroinflammatory diseases, rheumatoid arthritis, cardiovascular diseases. The elevated MCP-1 level has been observed in COVID-19 patients and proven to be a biomarker associated with the extremity of disease along with IP-10. This review will focus on involvement and role of MCP-1 in various pathological conditions.


Subject(s)
Chemokine CCL2/immunology , Animals , Biomarkers , Chemokine CCL2/genetics , Chemokine CCL2/physiology , Chemotaxis , Disease , Humans , Monocytes/physiology , Oxidative Stress
4.
EMBO Mol Med ; 12(10): e13038, 2020 10 07.
Article in English | MEDLINE | ID: covidwho-722035

ABSTRACT

Early in the COVID-19 pandemic, type 2 diabetes (T2D) was marked as a risk factor for severe disease and mortality. Inflammation is central to the aetiology of both conditions where variations in immune responses can mitigate or aggravate disease course. Identifying at-risk groups based on immunoinflammatory signatures is valuable in directing personalised care and developing potential targets for precision therapy. This observational study characterised immunophenotypic variation associated with COVID-19 severity in T2D. Broad-spectrum immunophenotyping quantified 15 leucocyte populations in peripheral circulation from a cohort of 45 hospitalised COVID-19 patients with and without T2D. Lymphocytopenia and specific loss of cytotoxic CD8+ lymphocytes were associated with severe COVID-19 and requirement for intensive care in both non-diabetic and T2D patients. A morphological anomaly of increased monocyte size and monocytopenia restricted to classical CD14Hi CD16- monocytes was specifically associated with severe COVID-19 in patients with T2D requiring intensive care. Increased expression of inflammatory markers reminiscent of the type 1 interferon pathway (IL6, IL8, CCL2, INFB1) underlaid the immunophenotype associated with T2D. These immunophenotypic and hyperinflammatory changes may contribute to increased voracity of COVID-19 in T2D. These findings allow precise identification of T2D patients with severe COVID-19 as well as provide evidence that the type 1 interferon pathway may be an actionable therapeutic target for future studies.


Subject(s)
COVID-19/pathology , Diabetes Mellitus, Type 2/pathology , Monocytes/physiology , Aged , COVID-19/complications , COVID-19/virology , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Diabetes Mellitus, Type 2/complications , Female , Humans , Immunophenotyping , Inflammation/etiology , Interleukin-6/genetics , Interleukin-6/metabolism , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/metabolism , Lipopolysaccharide Receptors/metabolism , Lymphopenia/diagnosis , Male , Middle Aged , Monocytes/cytology , Monocytes/pathology , Risk Factors , SARS-CoV-2/isolation & purification , Severity of Illness Index
5.
Geroscience ; 42(4): 1051-1061, 2020 08.
Article in English | MEDLINE | ID: covidwho-600999

ABSTRACT

The ongoing pandemic severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes a disproportionate number of severe cases and deaths in older adults. Severe SARS-CoV-2-associated disease (coronavirus disease 2019 (COVID-19)) was declared a pandemic by the World Health Organization in March 2020 and is characterized by cytokine storm, acute respiratory distress syndrome, and in some cases by systemic inflammation-related pathology. Currently, our knowledge of the determinants of severe COVID-19 is primarily observational. Here, I review emerging evidence to argue that monocytes, a circulating innate immune cell, are principal players in cytokine storm and associated pathologies in COVID-19. I also describe changes in monocyte function and phenotype that are characteristic of both aging and severe COVID-19, which suggests a potential mechanism underlying increased morbidity and mortality due to SARS-CoV-2 infection in older adults. The innate immune system is therefore a potentially important target for therapeutic treatment of COVID-19, but experimental studies are needed, and SARS-CoV-2 presents unique challenges for pre-clinical and mechanistic studies in vivo. The immediate establishment of colonies of SARS-CoV-2-susceptible animal models for aging studies, as well as strong collaborative efforts in the geroscience community, will be required in order to develop the therapies needed to combat severe COVID-19 in older adult populations.


Subject(s)
Betacoronavirus , Coronavirus Infections/complications , Coronavirus Infections/immunology , Monocytes/physiology , Pneumonia, Viral/complications , Pneumonia, Viral/immunology , Age Factors , COVID-19 , Coronavirus Infections/pathology , Humans , Immunity, Cellular , Pandemics , Pneumonia, Viral/pathology , Risk Factors , SARS-CoV-2
6.
Int Immunopharmacol ; 84: 106504, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-76298

ABSTRACT

AIM: To accumulate evidence that indicated the key role played by virus-triggered inflammation in the 2019-novel coronavirus disease (COVID-19) which emerged in Wuhan City and rapidly spread throughout China. METHODS: Age, neutrophil(NEU)-to-lymphocyte (LYM) ratio (NLR), lymphocyte-to-monocyte (MON) ratio, platelet-to-lymphocyte ratio (PLR), and C-reactive protein (CRP) of 93 patients with laboratory confirmed COVID-19 were investigated and compared. The receiver operating characteristic curve was applied to determine the thresholds for five bio-markers, and their prognostic values were assessed via the Kaplan-Meier curve and multivariate COX regression models. RESULTS: The median age was 46.4 years old, and 37cases were females. A total of 27.8% of patients had been to Wuhan, and 73.1% had contacted with people from Wuhan. Fever (83.8%) and cough (70.9%) were the two most common symptoms. Elevated NLR and age were significantly associated with illness severity. The binary logistic analysis identified elevated NLR (hazard risk [HR] 2.46, 95% confidence interval [CI] 1.98-4.57) and age (HR 2.52, 95% CI 1.65-4.83) as independent factors for poor clinical outcome of COVID-19. NLR exhibited the largest area under the curve at 0.841, with the highest specificity (63.6%) and sensitivity (88%). CONCLUSIONS: Elevated age and NLR can be considered independent biomarkers for indicating poor clinical outcomes.


Subject(s)
Betacoronavirus , Blood Platelets/physiology , Coronavirus Infections/diagnosis , Lymphocytes/physiology , Monocytes/physiology , Neutrophils/physiology , Pneumonia, Viral/diagnosis , Adult , C-Reactive Protein/analysis , COVID-19 , Coronavirus Infections/blood , Coronavirus Infections/epidemiology , Coronavirus Infections/pathology , Epidemics , Female , Humans , Lymphocyte Count , Male , Middle Aged , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/epidemiology , Pneumonia, Viral/pathology , Prognosis , ROC Curve , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL